4th International SWAT Conference 4-6 July 2007 - Delft, The Netherlands

Importance of Spatial Distribution in Small Watersheds

Francisco Olivera, Ph.D., P.E. Assistant Professor Huidae Cho Graduate Research Assistant

Zachry Department of Civil Engineering Texas A&M University

I was here before

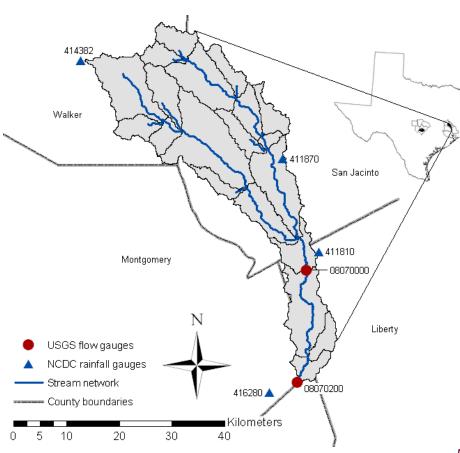
1982 – 1983: Dip. Hydraulic Engineering
1987 – 1988: M. Sc. Hydraulic Engineering

Definitions

- Spatial distribution: location of land uses, soil types and precipitation within the watershed.
- Small watershed: a drainage area with a time of concentration shorter than the model's computational time step.

Rule of thumb: If it is larger than 3,500 km², it will take more than one day to drain; if it is smaller than 350 km², it will take less than one day to drain.

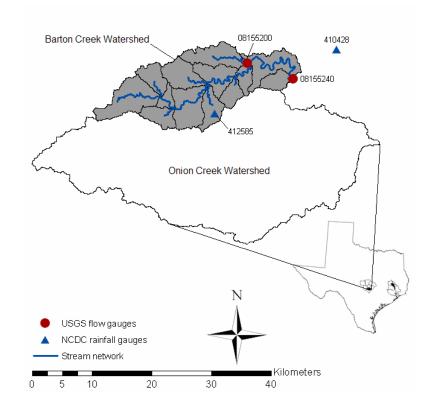
Other spatial issues not addressed here: data resolution and subbasin size / network density.


Research Question

- Is the spatial distribution really important in small watersheds?
- Doesn't all surface runoff drain within one time step? Do we need a model to capture that? Does it matter where the runoff was generated?
- Is the baseflow significant in small watersheds?
- Do we really need to know <u>where</u> things take place in a small watersheds?

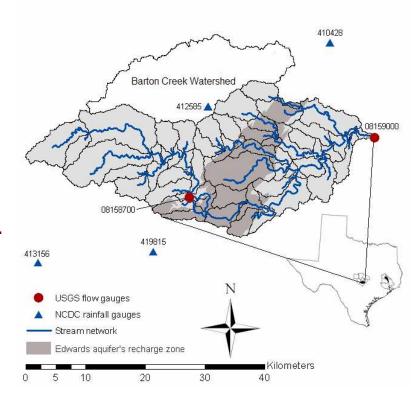
San Jacinto River Watershed

East Fork of the San Jacinto River watershed.


- Area: 1,005 km²
- Land use: 72% forest and 23% rangeland.
- Soil texture: 62% sand.
- Precipitation: 1400 mm/yr.
- Number of subbasins: 20

Barton Creek Watershed

Barton Creek watershed.


- Area: 277 km²
- Land use: 51% forest and 42% rangeland.
- Soil texture: even (sand/silt/clay).
- Precipitation: 1020 mm/yr.
- Number of subbasins: 16

Onion Creek Watershed

Onion Creek watershed.

- Area: 831 km²
- Land use: 45% forest and 42% rangeland.
- Soil texture: even (sand/silt/clay).
- Precipitation: 1020 mm/yr.
- Number of subbasins: 61

Hydrologic and Terrain Data

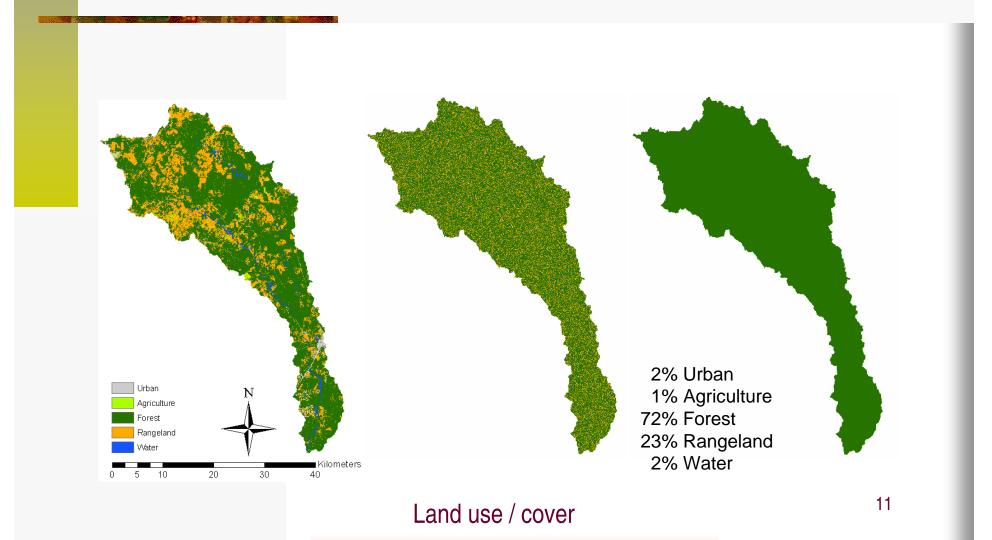
- Land use/cover: USGS National Land Cover Dataset (NLCD).
- **Soil type**: NRCS State Soil Geographic Dataset (STATSGO).
- Precipitation: NWS-NCDC rain gauges.
- **Topography**: USGS National Elevation Dataset (NED).
- **Flow**: USGS flow gauges.

Watershed Models

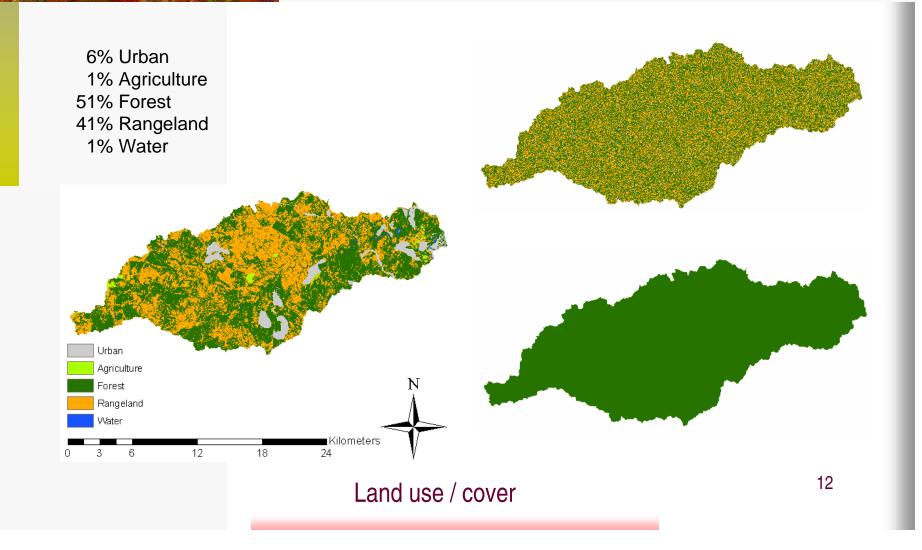
- A total of 54 models were developed as unique combinations of:
 - three watersheds: East Fork of San Jacinto Rv., Barton Ck. and Onion Ck;
 - three land use distributions: original, random and single;
 - three soil type distributions: original, random and single;
 - two precipitation distributions: multiple and single rain gauge.

$3 \times 3 \times 3 \times 2 = 54$

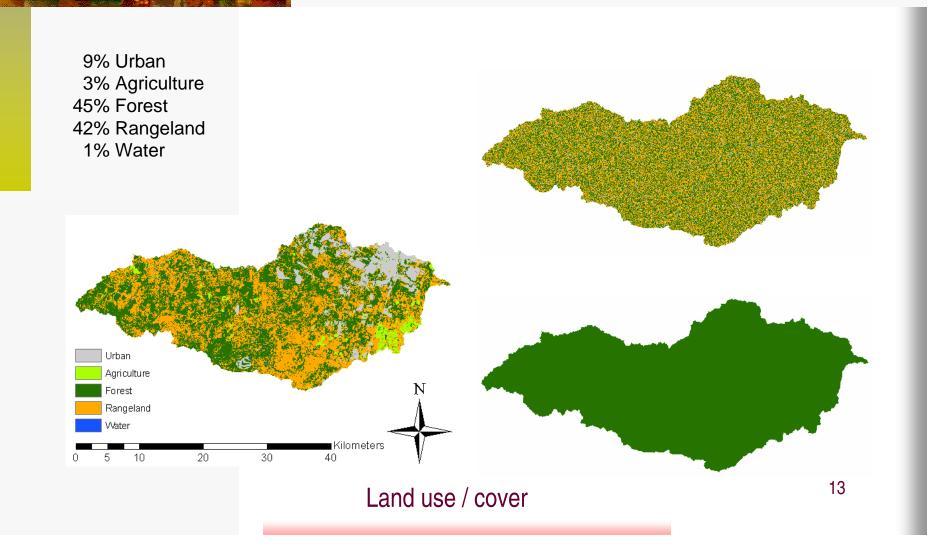
Simulation Periods

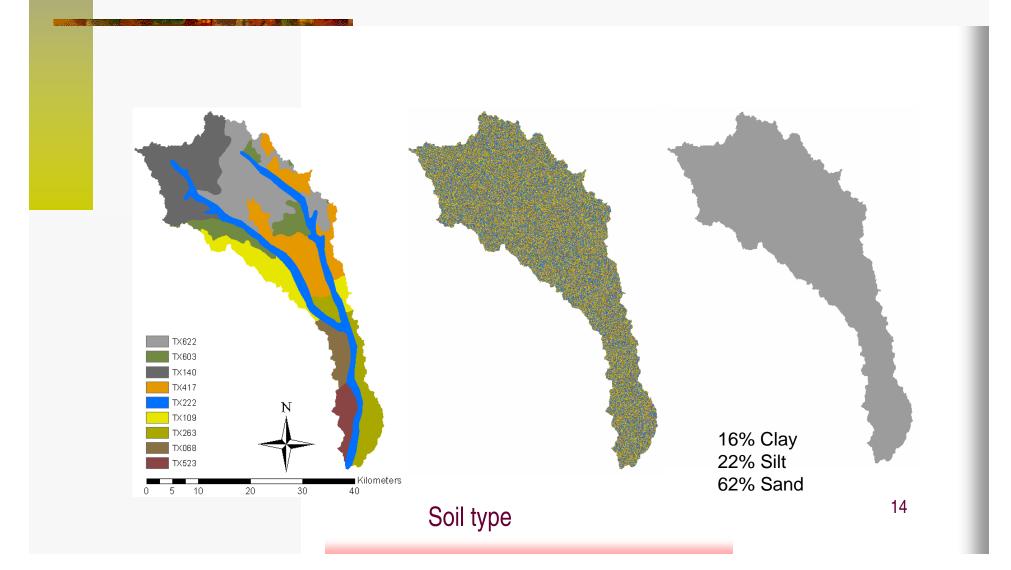

Calibration period

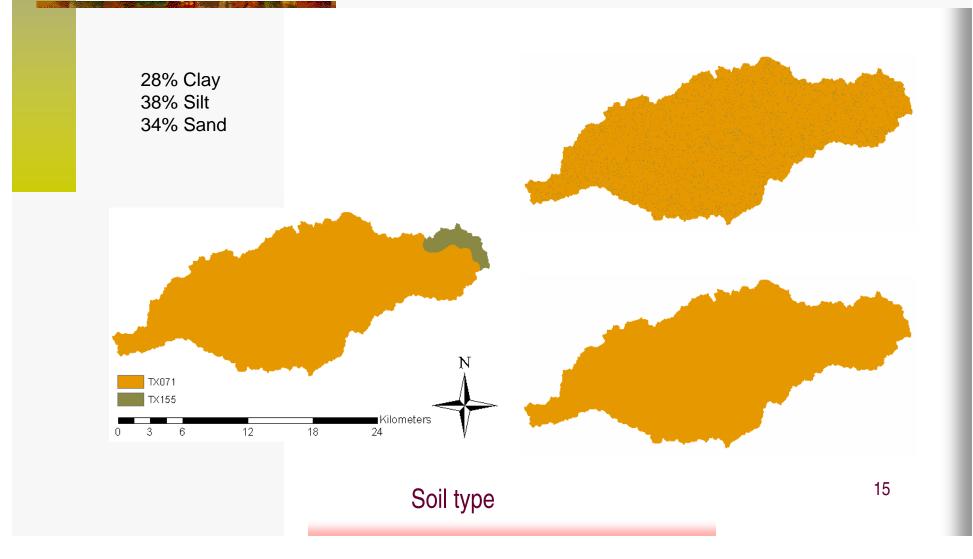
- 2 years of stabilization: January 1, 1989 to December 31, 1990
- 4 years of simulation: January 1, 1991 to December 1994

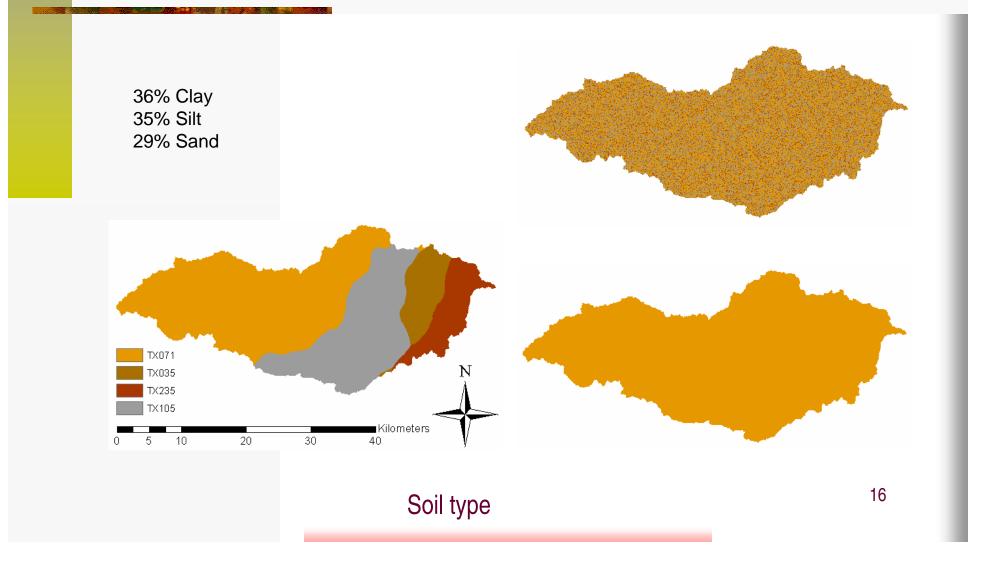

Validation period

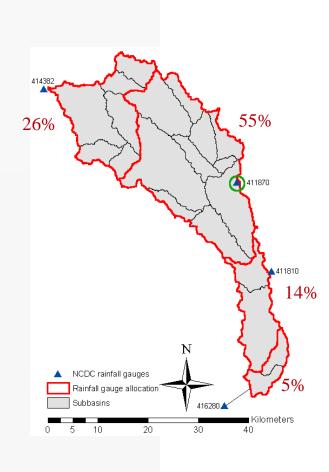
- 2 years of stabilization: January 1, 1995 to December 31, 1996
- 4 years of simulation: January 1, 1997 to December 31, 2000

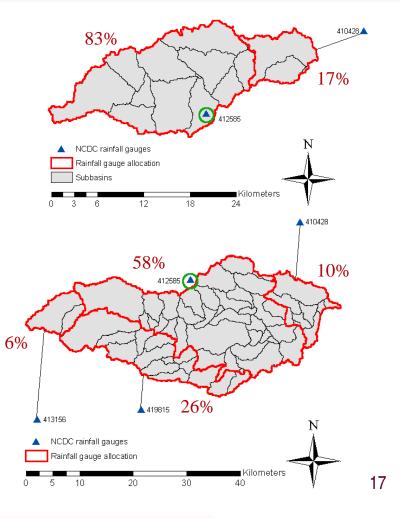

East Fork San Jacinto River


Barton Creek


Onion Creek


East Fork San Jacinto River


Barton Creek



Onion Creek

Precipitation – Multi/Single Gauge

Calibration Objective Function

Objective function:

$$\sum_{i=1}^{n} (Q_{obs} - Q_{sim})^2$$

- Tends to stress the matching of peak flows more than the matching of low flows... perhaps too much! The entire calibration might be driven by a few extremely high-flow days.
- Method used to minimize the objective function: Shuffle Complex Evolution (SCE).

Calibration Parameters

Parameter	Description (Neitsch et al., 2002) **COPY&PASTE**	Range
CN2	Initial NRCS runoff curve number for moisture condition II	35 - 99
SOL_AWC	Available water capacity of the soil layer (mm H_2O/mm soil)	0.0 - 1.0
ESCO	Soil evaporation compensation factor	0.01 - 1.0
GWQMN	Threshold depth of water in the shallow aquifer required for return flow to occur (mm H_2O)	0 – 5000
GW_REVAP	Groundwater revap coefficient	0.02 - 0.20
REVAPMN	Threshold depth of water in the shallow aquifer for revap or percolation to the deep aquifer to occur (mm H_2O)	0 – 500
GW_DELAY	Groundwater delay time (days)	0 - 200
RCHRG_DP	Deep aquifer percolation fraction	0.0 - 1.0
CH_K2	Effective hydraulic conductivity in main channel alluvium (mm/hr)	0.025 - 250
ALPHA_BF	Baseflow alpha factor (days)	0.0 - 1.0
OV_N	Manning's n value for overland flow	0.01 - 1.0
GW_DELAY	Groundwater delay time (days)	0 - 200
RCHRG_DP	Deep aquifer percolation fraction	0 - 1.0

Calibration Decision Variables

Parameter change rule:

$$p_{\text{adjusted-x}} = p_{\text{initial-x}} + \alpha_p (p_b - p_{\text{initial-x}})$$

- p_{initial-x}: parameter value at location x before calibration;
- p_{adjusted-x}: parameter value at location x after calibration;
- p_b: upper/lower parameter limit; and
- $\alpha_{\rm p}$: decision variable for parameter p.
- There are 13 calibration parameters *p* and, therefore, 13 decision variables α_p .

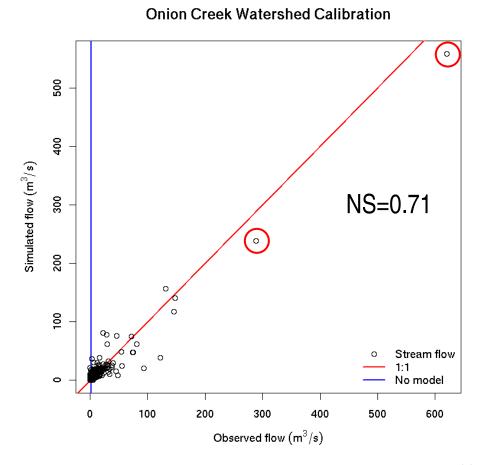
Model Assessment

The Nash-Sutcliffe coefficient was used to assess the model efficiency.

NS = 1 -
$$\frac{\sum_{i=1}^{n} (Q_i - Q_i)^2}{\sum_{i=1}^{n} (Q_i - \overline{Q})^2}$$

Note that NS compares the model with the "no model" (long-term average value). High NS might indicate a good model or a bad no-model.

Results - Calibration

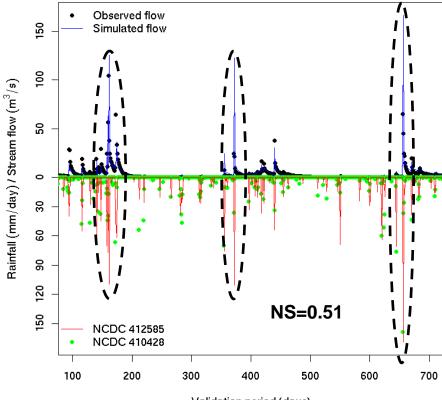

		Multiple rain gauges			Single rain gauge			
Calibration		Soil type:	Soil type:	Soil type:	Soil type:	Soil type:	Soil type:	
		Original	Single	Random	Original	Single	Random	
East Fork San Jacinto River	Land use: Original	0.44	0.45	0.44	0.42	0.34	0.25	
	Land use: Single	0.43	0.50	0.46	0.37	0.42	0.41	
	Land use: Random	0.39	0.37	0.39	0.39	0.37	0.35	
Barton Creek	Land use: Original	0.86	0.88	0.86	0.83	0.85	0.84	
	Land use: Single	0.83	0.88	0.88	0.79	0.85	0.85	
	Land use: Random	0.86	0.87	0.88	0.82	0.84	0.86	
Onion Creek	Land use: Original	0.92	0.91	0.91	0.92	0.91	0.87	
	Land use: Single	0.92	0.90	0.91	0.91	0.90	0.89	
	Land use: Random	0.91	0.91	0.90	0.92	0.90	0.88	

Nash – Sutcliffe Coefficient

Why is it so good?

Onion Creek: original land use distribution, original soil type distribution and multiple rain gauges.

NS = 0.92



Results – Temporal Validation

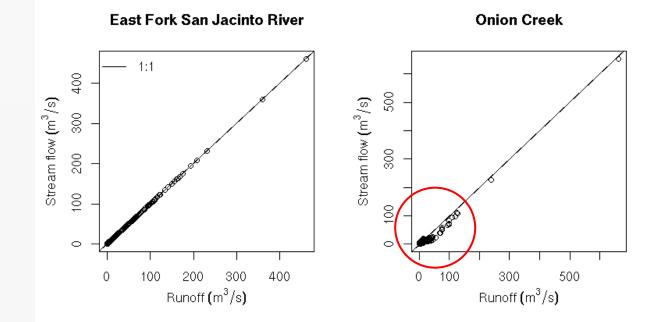
Temporal validation		Multiple rain gauges			Single rain gauge		
		Soil type:	Soil type:	Soil type:	Soil type:	Soil type:	Soil type:
		Original	Single	Random	Original	Single	Random
East Fork San Jacinto River	Land use: Original	0.43	0.58	0.50	0.26	0.37	0.25
	Land use: Single	0.31	0.62	0.49	0.23	0.47	0.31
	Land use: Random	0.33	0.43	0.41	0.30	0.27	0.23
Barton Creek	Land use: Original	-0.22	-0.20	-0.22	-0.22	-0.28	-0.01
	Land use: Single	-0.44	-0.20	-0.19	-0.39	-0.10	-0.35
	Land use: Random	-0.28	-0.32	-0.15	-0.22	-0.10	-0.20
Onion Creek	Land use: Original	0.27	0.31	0.31	0.03	0.07	0.04
	Land use: Single	0.19	0.27	0.31	0.06	0.05	0.09
	Land use: Random	0.21	0.24	0.29	0.12	0.01	0.11

Why is it so bad?

Barton Creek: original land use distribution, original soil type distribution and multiple Barton Creek Watershed: Stream flow / Rainfall

Validation period (days)

rain gauges.


NS = -0.22

8...

Results – Spatial Validation

		Multiple rain gauges			Single rain gauge			
Spatial validation		Soil type:	Soil type:	Soil type:	Soil type:	Soil type:	Soil type:	
		Original	Single	Random	Original	Single	Random	
East Fork San Jacinto River	Land use: Original	0.48	0.38	0.47	0.53	0.36	0.36	
	Land use: Single	0.47	0.49	0.44	0.47	0.48	0.45	
	Land use: Random	0.48	0.35	0.46	0.47	0.56	0.49	
Barton Creek	Land use: Original	0.69	0.72	0.68	0.70	0.75	0.72	
	Land use: Single	0.65	0.73	0.73	0.67	0.74	0.74	
	Land use: Random	0.66	0.71	0.73	0.70	0.73	0.75	
Onion Creek	Land use: Original	0.72	0.76	0.58	0.52	0.55	0.38	
	Land use: Single	0.70	0.73	0.65	0.45	0.45	0.22	
	Land use: Random	0.57	0.70	0.43	0.54	0.34	0.46	

Effect of Flow Routing

Conclusions

- In small watersheds, lumped models might do as well as distributed models.
- In small watersheds, it does not matter where runoff is generated with respect to the outlet, provided the correct combinations of land use/cover, soil type and precipitation depth are defined.
- There is a need to define subbasins to capture the precipitation spatial variability.
- The Nash-Sutcliffe coefficient is not a good metric to compare model performance. It is good only to compare models of the same watershed over the same period.

